Epigenome editing strategies for the functional annotation of CTCF insulators

The human genome is folded into regulatory units termed ‘topologically-associated domains’ (TADs). Genome-wide studies support a global role for the insulator protein CTCF in mediating chromosomal looping and the topological constraint of TAD boundaries. However, the impact of individual insulators on enhancer-gene interactions and transcription remains poorly understood. Here, we investigate epigenome editing strategies for … Continued

Resolving medulloblastoma cellular architecture by single-cell genomics

Medulloblastoma is a malignant childhood cerebellar tumour type that comprises distinct molecular subgroups. Whereas genomic characteristics of these subgroups are well defined, the extent to which cellular diversity underlies their divergent biology and clinical behaviour remains largely unexplored. Here we used single-cell transcriptomics to investigate intra- and intertumoral heterogeneity in 25 medulloblastomas spanning all molecular … Continued

Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL.

Cancer evolution is fueled by epigenetic as well as genetic diversity. In chronic lymphocytic leukemia (CLL), intra-tumoral DNA methylation (DNAme) heterogeneity empowers evolution. Here, to comprehensively study the epigenetic dimension of cancer evolution, we integrate DNAme analysis with histone modification mapping and single cell analyses of RNA expression and DNAme in 22 primary CLL and … Continued

Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution.

Recent advances in single-cell and single-molecule epigenomic technologies now enable the study of genome regulation and dynamics at unprecedented resolution. In this Perspective, we highlight some of these transformative technologies and discuss how they have been used to identify new modes of gene regulation. We also contrast these assays with recent advances in single-cell transcriptomics … Continued

Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq.

Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma … Continued